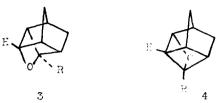
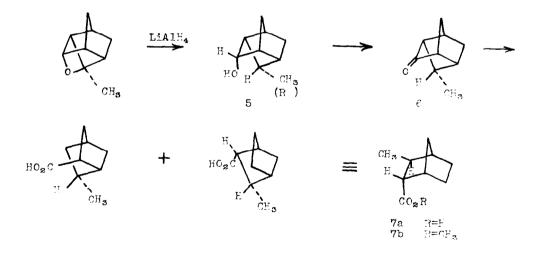
PHOTOCYCLIZATIONS OF 5-ACYLNORBORNENES; A SYNTHESIS OF TRICYCLO [3.3.0.0.^{3,7}]OCTAN-2-OLS R. R. Sauers, W. Schinski, and M. M. Mason Department of Chemistry, Rutgers University

New Brunswick, New Jersey 08903 (Received in USA 24 October 1968; received in UK for publication 29 November 1968) A study of the photochemistry of 5-acylnorbornenes (1 and 2) has been


initiated with the hope of providing information of stereochemical and structural relevance to the three major photoprocesses characteristic of γ , δ -unsaturated ketones: intramolecular oxetane formation, ^{2·3,4} intramolecular energy transfer,⁴ and sigmatropic rearrangement.⁵ Reported herein are the chemical results of this investigation. Subsequently, some aspects of the photochemical processes will be detailed.


Irradiation of a 5% solution of 2 ($R = CH_3$) in de-oxygenated benzene with a medium pressure mercury lamp (Pyrex filter) led to the production of a single new volatile product. Isolation of this material by preparative gas chromatography yielded a colorless oil which did not show significant absorptions in the hydroxyl and carbonyl regions of the infrared spectrum. The appearance of a moderately strong absorption band at 10.2 μ was suggestive of an oxetane system.⁶ This conclusion was strengthened by the appearance of a quartet (1 H) at $\delta 4.43$

79

in the nmr spectrum. The spectral data are thus consistent with oxetane 3 or 4. The results of degradative experiments described below can be derived only from structure 3.

Reductive cleavage of the oxetane with lithium aluminum hydride in refluxing N-ethylmorpholine produced a secondary alcohol, 7 m.p. 29.5-30.5°, as shown by the appearance of doublets at $\delta 3.71$ (H-C-O proton, J= 3 cps) and $\delta 0.90$ (CH₃ protons, J = 7 cps) in the nmr spectrum. Chromic acid oxidation of the alcohol produced a ketone ($\lambda \frac{C=0}{CCl_4}$ 1754 cm⁻¹); 2,4-DNPH, m.p. 165.5-166°, which could be cleaved by potassium t-butoxide⁸ to an equimolar mixture of two carboxylic acids. Identification of one of these as 3-<u>exo</u>-methylnorbornane-2-<u>endo</u>-carboxylic acid (7a) was accomplished by conversion of the mixture to methyl esters (<u>via</u> CH₂N₂) followed by gas chromatographic separation and direct comparison of the ester 7b with an authentic sample.⁹ The structures of the intermediate ketone (6) and alcohol (5) are thus established beyond doubt.

Similarly, ¹⁰ the following derivatives of 2 have been prepared ¹¹ and photocyclized: R = H, CH_2CH_3 , $CH_2C_6H_5$, C_6H_5 , $\alpha-C_{10}H_7$. The close resemblance of the nmr spectra of the oxetanes so produced suggests that they all have the same basic structures as 3 (see Table I). In addition, the oxetanes could be converted to the corresponding tricyclo [3.3.0.0^{3,7}] octanols by lithium aluminum hydride reduction or by Raney nickel-catalyzed hydrogenolysis in the aromatic cases. The carbinol proton in each case appeared as a closely spaced doublet (J = 2-3 cps).

ТА	BI	E	T

Physical Properties of Oxetanes and Alcohols (3 and 5)

		Oxetanes		Tricyclo[3.3.0.0. ^{3,7}]octanols	
R	=	m.p. or	δ (ppm)	m.p. or	δ (ppm)
		b.p.	0-С-Н	b.p.	0-С-Н
	CH3	60 ⁰ (10 mm)	4.43	29.5-30.5°	3.71
	CH ₂ CH ₃	106°(48 mm)	4.48	150-168°(30 mm)	3.77
	CH₂C ₆ H ₅	89 - 91°(0.75 mm)	4.44	175-180°(26 mm)	3.62
	н	136 - 137.5°	4.58*	134-135°	3.83
	C ₆ H ₅	+	4.53	88-89°	3.82
	a-C ₁₀ H ₇	+	4.68	174-175°	3.98

*sextet, relative area equal to two protons

⁺decomposed on attempted purification

It was anticipated that sigmatropic rearrangement would be the major, if not exclusive, photoreaction of the <u>exo</u>-systems. Unfortunately, irradiation of 1 ($R=CH_3$) under the above conditions led to no new volatile products but instead to a slow consumption of starting material. Apparently, intermolecular processes competitively destroyed the starting ketone.

In summary, a novel series of oxetanes and alcohols has been produced from 5-acylnorbornenes. The facile photocyclization of the a-naphthyl ketone 2 $(R = a-C_{1,0}H_7)$ is of particular interest owing to the known inertness of naph-

No.2

thyl ketones in intermolecular oxetane reactions.

<u>Acknowledgements</u>. - We are grateful to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for generous financial support. M. M. M. gratefully acknowledges the American Cyanamid Company for a Junior Education Award.

REFERENCES

12

- A preliminary account of this work was presented at the 155th American Chemical Society National Meeting, San Francisco, Cal., April 1968, Abstract P 112.
- 2. R. Srinivasan, J. Am. Chem. Soc., 82, 775 (1960).
- 3. N. C. Yang, M. Nussim, and D. R. Coulson, Tetrahedron Letters, 11, 5 (1960).
- 4. H. Morrison, J. Am. Chem. Soc., 87, 932 (1965).
- 5. K. J. Crandall, J. P. Arrington, and R. J. Watkins, <u>Chem. Commun</u>., 1052 (1967).
- S. Searles, Jr. in "Heterocyclic Compounds with Three- and Four-membered Rings. Part II, A. Weissberger, Ed., Interscience Publishers, New York, N. Y., Chap. IX.
- This unexpected result attests to the inertness of the oxetane ring toward nucleophilic cleavage; cf S. Searles, E. F. Lutz, and M. Tamres, <u>J. Am.</u> Chem. Soc., <u>82</u>, 2932 (1960).
- 8. P. G. Gassman and F. V. Zalar, ibid., 88, 2252 (1966).
- 9. We are indebted to Prof. J. Berson for an infrared spectrum of this material.
- 10. Preparative scale experiments were carried out on <u>exo-endo</u>-mixtures. The oxetanes (20-50%) were isolated by distillation or sublimation after re-moval of unreacted starting material by washing with dilute KMnO₄.
- 11. The benzyl, phenyl, and naphthyl ketones were prepared by addition of the appropriate Grignard reagent to 2 (R=H) followed by chromic acid oxidation.
- 12. N. C. Yang, Pure Appl. Chem., 9, 591 (1964).